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Abstract

This review examines the evidence that glucocorticoids are involved, during both adolescence and adulthood, in the cognitive deficits caused
by long-term alcohol consumption and in the mechanism(s) of alcohol dependence. During adolescence, the hypothalamopituitary–adrenal (HPA)
axis undergoes well-characterized changes in basal activity and many of these are influenced by alcohol consumption. While the former have been
fairly well studied, there is little information about whether alcohol effects on the HPA in adolescents differ from those in adults. The means by
which glucocorticoids may influence alcohol-related neurotoxicity are presented, and potential differences between adolescence and adults in this
regard noted. The substantial evidence for involvement of glucocorticoids in alcohol-induced cognitive deficits is described, with particular
reference to the consequences of alcohol withdrawal. The use of immature organotypic cultures of rodent brain in the study of alcohol
neurotoxicity is considered in detail, and the information obtained from this methodology concerning the role of glucocorticoid receptors and
excitable membrane proteins in this neurotoxicity. The influence of glucocorticoids on alcohol consumption and possible contributions to alcohol
dependence are then considered. In conclusion, more information concerning the effects of glucocorticoids on plasticity and alcohol neurotoxicity
during the adolescent period is needed.
© 2006 Elsevier Inc. All rights reserved.
Keywords: Alcohol; Glucocorticoids; Adolescence; Withdrawal; Neurotoxicity

Contents

1. Stress reactivity during adolescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
2. Alcohol effects on glucocorticoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
3. Alcohol-induced cognitive deficits, neurotoxicity and adolescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
4. The importance of the alcohol withdrawal syndrome in neurotoxicity and cognitive deficits . . . . . . . . . . . . . . . . . . . . . 237
5. Alcohol withdrawal neurotoxicity and glucocorticoids in organotypic cultures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
6. Involvement of glucocorticoids in alcohol consumption and dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
There is now considerable information suggesting that
glucocorticoid hormones play an important role in the adverse
effects of prolonged excess alcohol consumption. The evidence
for involvement of these hormones in alcohol-induced neuro-
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toxicity is strong, and there is also increasing support for their
contribution to the development of alcohol dependence.
Adolescent alcohol use is a significant risk factor for prolonged
alcohol dependence and emerging evidence suggests that
adolescents respond differently than adults to alcohol. This
review will present evidence that glucocorticoid hormones and
their receptors may be involved in both the neurotoxic and
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dependence-producing effects of alcohol. Although studies on
effects of alcohol during adolescence are now ongoing, there is
not a large amount of information about possible differences in
glucocorticoid effects over this time period, so this review will
summarize available information on alcohol–glucocorticoid
interactions in both the adolescent and adult phases. Adoles-
cence in humans is regarded as the transition phase between
childhood and adulthood, lasting from approximately 12 to
18 years of age and including the periods prior to and after
puberty (Spear, 2000). Definitions of adolescence in rats and
mice are not totally consistent, but it has been defined as
between postnatal 28 and 42 days (Spear, 2000), and also as
from 7 to 10 days before puberty (about 40 days postnatal) to
approximately one week after puberty (Laviola et al., 2003).
However some authorities have used a wider timescale and have
applied the phrase “early adolescence” to describe the juvenile
period between weaning and puberty, postnatal days 21 and 34
(Laviola et al., 2003).

1. Stress reactivity during adolescence

HPA function and reactivity to stress during adolescence
have been covered in the excellent review by Spear (2000), so
the present discussion will be confined to the glucocorticoids
and aspects specifically relevant to alcohol neurotoxicity and
alcohol consumption. Under normal circumstances, glucocor-
ticoid release (cortisol in humans, corticosterone in rodents)
follows a circadian rhythm, with high circulating concentra-
tions prior to and after awakening, falling to lower levels
during the remainder of the active period and the sleep phase.
During stressful situations, release of glucocorticoids is
elicited via adrenocorticotrophic hormone (ACTH) from the
pituitary. The cellular effects of glucocorticoids are produced
via action on two types of receptors, Type I, also known as
mineralocorticoid receptors (MR) that have a high affinity for
the ligands, and Type II or glucocorticoid receptors (GR) that
are activated at the high glucocorticoid levels seen during the
circadian peak and during stress. The CNS contains both
types, with different regional distributions (Joels and De
Kloet, 1994), and activation of these receptors mediates not
only feedback control of glucocorticoid release but also
important effects of glucocorticoids on many aspects of brain
function.

In humans, evidence on differences between absolute
plasma glucocorticoid levels in adolescents and adults is
somewhat conflicting, some studies show a gradual increase in
cortisol levels during puberty (Kiess et al., 1995; Walker et al.,
2001) while others found no correlation with age, the
individual differences being maintained from childhood to
adulthood (Knutsson et al., 1997). It has been suggested that
lower cortisol levels in adolescents are associated with
conduct disorders, including low self-control, low harm
avoidance and higher aggression and antisocial behavior
(Shoal et al., 2003; Ramirez, 2003). However, the situation is
complicated by the fact that many studies have not examined
the whole circadian period, and raised cortisol levels at one
time of day may be accompanied by smaller than normal
levels at a different time. The increase in cortisol levels seen
during the 30 min after awakening, for example, was reported
by Rosmalen et al. (2005) to be lower in children than adults.
In rodents, most studies have concentrated on the immediately
postnatal or juvenile (from weaning until adolescence) phases,
rather than the adolescent period. Basal plasma corticosterone
concentrations in naive adolescent mice were found to be two-
fold higher than those in corresponding adults, but this
difference was seen only males, not females (Laviola et al.,
2002).

During the first postnatal days, rodents undergo a period of
decreased hormonal reactivity to stressful situations, known as
the “stress hyporesponsive period”, that lasts in rats from
postnatal days 4 to 14. This period is controlled by Type II
glucocorticoid receptor feedback, as well as maternal signals
(Levine, 2001; Schmidt et al., 2005). It appears to have a
functional analogue in humans aged 1–2 years (Gunnar and
Donzella, 2002). During this time the release of glucocorticoids
in response to many external stimuli is considerably lower than
at any other time, although some responses, such as cytokine-
induced glucocorticoid release, still occur (Furukawa et al.,
1998). After this period and through the adolescent phase,
glucocorticoid responsivity gradually increases until adulthood.
The switch to a mature pattern of stress responding is
accompanied by the appearance of the polyamine stress
response, a transient increase in brain polyamine metabolism
that is seen in the adult state (Gilad and Gilad, 2003). Some
experimental studies have found glucocorticoid release in
response to stressful stimuli to be lower but more prolonged
during the adolescent phase than in adulthood (Laviola et al.,
1999), but other studies indicated that such differences seen in
juveniles are resolved by the adolescent phase (Choi and
Kellogg, 1996). In addition, some evidence does suggest that a
dissociation between basal corticosterone levels and corticoster-
one responses to stress may exist. For example, Laviola et al.
(2002) demonstrated that periadolescent rats (30–45-day old)
had higher basal corticosterone levels than adults suggesting
higher basal HPA activation in younger animals but lesser
corticosterone release than adults in response to a social stress.
Given the qualitative differences in the nature of different stress
models, it is clear that significant expansion of this area of work
is needed.

The situation is not simply a matter of total glucocorticoid
concentrations, as glucocorticoids in plasma are bound to
protein (primarily corticosterone binding globulin, CBG, with
some albumen binding), and they act via specific receptor sites.
Only approximately 10% of the total plasma concentration
remains unbound and thus available for action on tissues.
Salivary cortisol levels reflect the free glucocorticoid compo-
nent, but many studies in both humans and rodents have
measured only total plasma concentrations. The free concentra-
tion of glucocorticoid is the proportion which is available to
enter the brain, since the bound form does not pass the blood
brain barrier in normal circumstances although the albumen
bound component may dissociate rapidly enough to also be
available to the CNS (Pardridge et al., 1983). The binding
capacity of CBG is not constant and in stressful situations can,
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for example, decrease considerably to as low as 30% of control
values, (Fleschner et al., 1995; Spencer et al., 1996; Tennebaum
et al., 1997). There is also circadian variation, with higher CBG
during the quiescent phase (Meaney et al., 1992). During the
postnatal stress hyporesponsive period CBG binding is very low,
as little as 3% of adult values, so the availability and hence the
effects particularly on the CNS of circulating glucocorticoid will
be considerably greater than that of corresponding total
circulating concentrations in adult life (Viau et al., 1996). By
postnatal day 15, the CBG levels in rats had risen to 25% of adult
levels (Viau et al., 1996), but a detailed analysis of changes
during the adolescent period does not appear to be available.

The consequences of glucocorticoid release are also deter-
mined by the receptor levels, in addition to the free concentration
of glucocorticoids. Data published by multiple laboratories,
including those of the authors, strongly suggests that Type II
glucocorticoid receptor occupation is a key factor in glucocorti-
coid regulation of both substance use and neuronal injury (Cho
and Little, 1999; Packan and Sapolsky, 1990; Mulholland et al.,
2005). Densities of both Type I and II receptors are low at birth,
except in the pituitary, but Type I density rises to adult levels
within a week after birth and Type II density within three weeks
(in rats), after which levels do not change extensively under
normal circumstances (Joels and De Kloet, 1994; Vazques,
1998). Stressful situations can, however, alter the density and
affinity of both glucocorticoid receptor subtypes (e.g. Sapolsky
and McEwen, 1985; Meaney et al., 1992).

2. Alcohol effects on glucocorticoids

Blood concentrations of glucocorticoids are increased by
alcohol and the circadian rhythm is lost during long-term
consumption (Tabakoff et al., 1978; Sipp et al., 1993). During
the acute phase of alcohol withdrawal, the circulating
concentrations of corticosterone are greatly raised, in both
humans and animals (Adinoff et al., 1991; Tabakoff et al., 1978;
Roberts et al., 1992; Lamblin et al., 1996). During abstinence
these levels usually return to normal once the acute phase of
withdrawal is over, although Farren et al. (2004) found
increased serum cortisol in abstinent alcoholics of Type 2 but
not Type 1 drinkers. The data of Keedwell et al. (2001)
illustrates the importance of measuring free, rather than total,
concentrations of glucocorticoid, as they found a five-fold rise
in salivary (free) cortisol in alcoholics, while previous studies
over the corresponding period showed increase in total plasma
cortisol of only one half to two-fold. The normal circadian
rhythm often remains attenuated for some time after drinking
ceases. The hormonal responses to stress, however, are blunted
for a considerable time during the abstinence period both in
humans (Ehrenreich et al., 1997; Vescovi et al., 1997) and
rodents (Sipp et al., 1993; Lee and Rivier, 1995; Rivier, 1995),
suggesting a prolonged disturbance of feedback control. Lack of
dexamethasone suppression of cortisol release is reported in
20–65% of alcohol dependent individuals during abstinence
(Hundt et al., 2001).

Differences are seen in HPA responses to alcohol during
adolescence. Silveri and Spear (2004) found the acute effect of
alcohol in raising total plasma corticosterone was less marked in
young rats compared with adults, both when alcohol adminis-
tration was matched for dose and when doses were matched for
motor impairment to take into account the differential functional
effects of alcohol in adolescents. This pattern resembles that
reported for other drugs of dependence (e.g. Adriani and
Laviola, 2000). Apart from this study, however, there has been
little investigation of alcohol effects on HPA function during
adolescence. It is possible that HPA changes during or after
chronic alcohol consumption differ in the adolescent phase from
the adult but such information is not, as yet, available.

3. Alcohol-induced cognitive deficits, neurotoxicity and
adolescence

Cognitive deficits are seen in 50 to 80% of alcoholics (Bates
et al., 2002) and currently there is no effective therapeutic
treatment. Cognitive deficits not only affect the quality of life of
alcoholics and the amount of health care they need, but are also
considered to have a detrimental effect on treatment programs
and on the ability of alcoholics to refrain from drinking (Ihara et
al., 2000; Bowdon et al., 2001). Partial recovery of cognitive
function occurs after long-term (months or years) abstinence
from alcohol, but some residual memory problems remain
(Johnson-Greene et al., 1997).

The acute actions of alcohol on cognitive function appear to
be greater during the adolescence phase than in adulthood
(Brown and Tapert, 2004). Young adults aged 21 to 24 years
were more impaired in several measures of memory after
consumption of 0.6 g/kg alcohol than those aged 25 to 29 years
(Acheson et al., 1998). In rats, spatial memory at postnatal day
30 was more affected by acute alcohol administration than in
adults (Markwiese et al., 1998) and performance in an odor
discrimination test after a range of doses of alcohol was more
impaired in adolescents than adult animals (Land and Spear,
2004a). Learning of fear conditioning, however, was more
greatly affected by acute alcohol in adult than adolescent rats
(Land and Spear, 2004b). The mechanism(s) of the acute action
of alcohol on memory processes, however, are likely to differ
from the mechanism(s) by which chronic alcohol and with-
drawal affect memory.

A binge pattern of alcohol drinking, with very high
intermittent tissue alcohol concentrations, is frequent in
adolescents and there is substantial evidence that it is a
precursor to the development of alcohol dependence later in life
(Grant and Dawson, 1997). This drinking pattern has been
suggested to be more liable to cause brain damage than a
continuous alcohol intake with lower maximal tissue alcohol
concentrations (Hunt, 1993; Collins et al., 1996; Zou et al.,
1996; Crews et al., 2000). The neuronal damage may be due to a
direct effect of alcohol rather than to alcohol withdrawal,
suggesting the mechanisms of neurotoxicity caused by binge
drinking differ from those after long-term alcohol consumption
(see below). Neuronal degeneration has been studied in two
models of binge drinking in rats, both lasted four days and used
the Majchrowicz (1975) method of dose titration according to
behavioral effects. In both studies, the damage was maximal
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before the time of peak abstinence signs (Collins et al., 1996),
was greatest during the last dose and was less evident after
alcohol withdrawal and during subsequent abstinence (Crews et
al., 2000; Obernier et al., 2002). White et al. (2000) studied
memory impairment in the 8-arm radial maze, twenty days after
cessation of administration of alcohol in a “binge-drinking”
pattern by injections of high doses at 48 h intervals for twenty
days. Greater impairment was seen when the treatment was
started at postnatal day 30 than when it was commenced at
postnatal day 70. There were no differences in either acquisition
of the task or in anxiety-related behavior. There does not appear
to have been any investigation of the potential role of
glucocorticoid hormones in binge drinking and the later
consequences of this pattern of alcohol consumption.

Direct examination of the influence of age of commencement
of excessive drinking on the subsequent development of
cognitive problems has not been carried out in humans and
only a small amount of information is available as yet from
experimental studies comparing long-term alcohol consumption
during the adolescent and adult phases. Sircar and Sircar (2005),
compared the effects of five days of injections of 2 g/kg alcohol
on adolescent (postnatal days 30 to 34) and adult (postnatal days
60 to 64) rats. When the animals were tested at intervals after the
alcohol treatment, deficits in memory for the Morris water maze
were seen in the adolescents that lasted into the adult phase, but
the rats given alcohol as adults did not demonstrate such
deficits. This important study demonstrates that further
investigation is needed of the prolonged effects of chronic
alcohol intake during adolescence.

During adolescence maturation of brain regions takes place
with changes particularly in the prefrontal cortex and
hippocampus (Spear, 2000; Monti et al., 2005). These are the
areas particularly damaged by long-term alcohol consumption
(Harper, 1998) and that are known to be crucially involved in
memory processes. Some evidence suggests alcohol has greater
acute effects on neuronal plasticity during the adolescent period
than in adulthood. The effects of alcohol in depressing long-
term potentiation (LTP) were found to be more pronounced in
tissues from adolescent rats than those from adults (Swartz-
welder et al., 1995; Pyapali et al., 1999). This evidence, taken
with that demonstrating the resistance of adolescent brain
compared with adult to alcohol-potentiated GABAA receptor-
mediated inhibitory postsynaptic potentials (Li et al., 2006),
suggests age-dependent effects primarily on N-methyl-D-
aspartate receptor (NMDAr) function. It is not clear, though,
how these findings can be reconciled with those demonstrating
a role for GABAA receptor function in ethanol's inhibition of
LTP (Izumi et al., 2006). Glucocorticoids also affect neuronal
plasticity and the Type II glucocorticoid receptor has been found
to mediate depression of LTP and increases in long-term
depression (Xu et al., 1998). Alteration in calcium flux and
calcium handling, resulting in raised intracellular calcium
concentrations, is thought to be involved in the neurotoxic
effects of high concentrations of glucocorticoids (Kim and
Yoon, 1998), but information is not available on possible
differential effects during the adolescent phase. Given the high
circulating glucocorticoid concentrations that occur during
alcohol consumption and withdrawal, further information is
needed regarding potential interactions between alcohol and
glucocorticoids on neuronal plasticity in both adolescents and
adults.

4. The importance of the alcohol withdrawal syndrome in
neurotoxicity and cognitive deficits

The acute alcohol withdrawal syndrome is thought to be
causally involved in the cognitive deficits seen after long-term
alcohol intake. Neuronal hyperexcitability during the alcohol
withdrawal syndrome has been shown to contribute to the
neuronal degeneration caused by chronic alcohol intake,
although some neuronal damage can occur without withdrawal
(Hunt, 1993). Greater deficits in memory (Lukoyanov et al.,
1999; Farr et al., 2005) and more neuronal degeneration
(Phillips and Cragg, 1984; Cadete-Leite, 1990) were seen after
cessation of chronic alcohol intake than during its consumption.
Multiple withdrawal episodes also cause greater learning
impairment in rats than a single withdrawal episode (Bond,
1979; Lundqvist et al., 1994). Repeated alcohol withdrawal
increases the severity of withdrawal signs, and this effect is
prevented by nifedipine but not by diazepam (Veatch and
Gonzales, 2000; Mhatre et al., 2001). In humans, the severity of
the cognitive deficits in alcoholics was found to be related to
the number of detoxification episodes they had undergone
(Duka et al., 2003).

During the acute phase of alcohol withdrawal, we have
previously demonstrated that the neuronal hyperexcitability in
hippocampal neurons involves increases in excitatory amino
acid-mediated synaptic transmission and greater conductance of
dihydropyridine sensitive calcium channels (Whittington and
Little, 1993; Whittington et al., 1995; Molleman and Little,
1995). Changes were not, however, seen in GABAA-receptor or
GABAB-receptor mediated inhibitory synaptic potentials in
these neurons (Whittington et al., 1995; Molleman and Little,
1995). These changes could be related to the substantial
increases in glucocorticoid release during the acute phase of
alcohol withdrawal (Adinoff et al., 1991; Tabakoff et al., 1978).
The regional distribution of Type II glucocorticoid receptors
through the CNS shows a high density in regions known to be
involved in memory formation such as the frontal cerebrocor-
tical regions and, in rodents, in the hippocampus (McEwen and
Wallach, 1973; Reul and De Kloet, 1985), brain areas that are
particularly affected by long-term alcohol consumption.

The hippocampus in particular is a critical mediator of HPA
axis function, providing glucocorticoid receptor-dependent
negative feedback (for review, see Brown et al., 1999). The
hippocampus has been widely, though not uniformly (Harding
et al., 1997), reported to suffer volume loss during alcohol
dependence in both adults and adolescents with an alcohol use
disorder, that may be both hemisphere- and sex-dependent
(Agartz et al., 1999; Laakso et al., 2000; Harper, 1998; Nagel et
al., 2005; Sullivan et al., 1995). The greater hippocampal
damage seen in rodents, compared with primates, after chronic
alcohol consumption may be related to the higher concentration
of Type II glucocorticoid receptors in the rodent hippocampus
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(Mar Sanchez et al., 2000). Thus dysregulation of this negative
feedback subsequent to alcohol-induced hippocampal injury
may well contribute to the altered HPA responsivity observed
with alcohol dependence.

It is well established that prolonged excess plasma gluco-
corticoid concentrations per se can cause neurotoxicity and
cognitive deficits (Sapolsky, 1986, 1993, 1996a, 2000; Packan
and Sapolsky, 1990; Seckl, 2000; Newcomer et al., 1999). The
neurotoxicity involves increased vulnerability to other potential
neurological insults, such as raised excitatory amino acid
activity, rather than a direct neurotoxic effect of glucocorticoids
(Sapolsky, 1996b). The Type II glucocorticoid receptors are
thought to be involved in the glucocorticoid-induced neuronal
damage, while the higher affinity Type I receptors may mediate
neuroprotection (Abraham et al., 2001). During the acute
alcohol phase of alcohol withdrawal, the increased activity at
excitatory amino acid receptors (Whittington et al., 1995;
Molleman and Little, 1995) and raised calcium conductance
(Whittington and Little, 1993) plus the high circulating
corticosterone concentrations therefore make this period one
where neurotoxicity is highly likely to occur. Glucocorticoids
have been found to increase the severity of the behavioral
aspects of the alcohol withdrawal syndrome. Roberts et al.
(1991) showed administration of corticosterone to alcohol
withdrawal seizure-prone mice considerably increased the
severity of the behavioral withdrawal signs, and the glucocorti-
coid synthesis inhibitor aminoglutethimide decreased the
hyperexcitability. In two mouse strains, higher blood total
corticosterone concentrations were associated with a greater
severity of behavioral withdrawal signs and administration of
corticosterone to alcohol naive mice caused convulsive
behavior similar to that during alcohol withdrawal, that could
be measured by the tremor and convulsive movements induced
by gentle handling (Roberts et al., 1992). Studies in our
laboratory have shown that administration of RU38486 (also
known as mifepristone) in mice significantly decreased the
severity of the alcohol withdrawal syndrome, as measured by
the responses to handling (unpublished results).

The adverse effects of excessive circulating glucocorticoid
concentrations on cognition and memory are well established,
with functions involving the hippocampus and prefrontal
cerebral cortex being particularly affected (Belanoff et al.,
2001; Erickson et al., 2003). A study in psychotic depressives
found that administration of mifepristone to patients alleviated
both the depressive symptoms and the memory problems
suffered by these patients (Young et al., 2004). Recent reports
have indicated that glucocorticoids are involved in the cognitive
deficits in alcoholics. Errico et al. (2002) found that 4–5 weeks
after detoxification, alcoholics who had higher plasma cortisol
levels during their most recent acute withdrawal phase
demonstrated more severe cognitive deficits. Cognitive impair-
ment was correlated with the number of previous withdrawal
episodes and heavier alcohol consumption, suggesting these
predispose to greater cortisol release during each withdrawal
episode. High cognitive impairment was also associated with
attenuation of the cortisol response to stress, indicating a greater
dysfunction of HPA feedback control.
Although direct comparisons have not been made and would
be problematic to carry out, reports indicate that the alcohol
withdrawal syndrome is less severe during the adolescent phase
than in adulthood (Martin and Winter, 1998). Doremus et al.
(1998) found measures of anxiety-related behavior in adoles-
cent rats in the period following a single high dose of alcohol
were significantly less than the corresponding behavior in adult
rats. Salimov et al. (1996) showed that oral consumption of
alcohol by alcohol-preferring rats from 3 to 8 weeks of age
decreased anxiety-related behavior measured after eight days of
abstinence. While a less severe withdrawal syndrome would
tend to encourage greater alcohol consumption, information is
not yet available on the contribution of glucocorticoids in
adolescents to either alcohol withdrawal symptoms or the
adverse consequences of alcohol withdrawal.

5. Alcohol withdrawal neurotoxicity and glucocorticoids in
organotypic cultures

A wealth of evidence has been published previously
demonstrating the compensatory upregulation of NMDAr
(Devaud and Morrow, 1999; Hu and Ticku 1995; Rudolph et
al., 1997; Whittington et al., 1995) and L-type Ca2+ channels
(Dolin et al., 1987; Brennan et al., 1989), as well as reduced
expression of GABAA receptors (Devaud et al., 1999) in
response to alcohol. These studies typically employed adult
rodents or dissociated cell cultures from fetal rodents. The
organotypic immature brain slice culture model, first described
by Bosquet and Meunier (1962) and later refined by Stoppini et
al. (1991), has been used extensively by the authors, and others
(Belmadani et al., 2004; Thomas et al., 1998), to investigate
effects of alcohol that promote alcohol withdrawal-induced
neuronal excitability and neurotoxicity (i.e. Gibson et al., 2003;
Harris et al., 2003; Mayer et al., 2002; Mulholland et al., 2005;
Prendergast et al., 2004). It is of importance to note that, while
organotypic slice cultures are typically obtained in P8–P9 rat
pups, ethanol exposure often does not begin until cultures are at
an age commensurate with that considered to be closely
preadolescent or periadolescent (15–38 days). These ex vivo
ages extend well into the preadolescent (Carlezon et al., 2003)
and periadolescent periods (Spear, 2000). A recent paper
showed the distribution of AMPA, kainate, and NMDA
receptors in the CA1 region of P30 organotypic hippocampal
slices and acute hippocampal slices taken from P30 adolescent
rats was “identical”, though modest differences in the distribu-
tion of MK-801 and AMPA binding sites in CA3 were observed
(Martens and Wree, 2001). Thus, the relevance of this model to
understanding possible effects of alcohol and corticosteroids on
the adolescent hippocampus may be considerable. Before such a
definitive conclusion can be made, though, comparative studies
using this model system and adolescent rodents in vivo must be
completed.

These studies cumulatively have delineated a cascade of
events induced by prolonged ethanol exposure that promote
neuronal excitability and Ca2+-dependent neuronal injury
during acute ethanol withdrawal. Such changes include reduced
expression of the Ca2+-buffering protein calbindin-D28K and
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increased expression of NR1 and NR2 subunits during ethanol
exposure, followed by release of high concentrations of
glutamate and the polyamine spermidine, which function as a
positive allosteric modulator of NMDAr open time via actions
at NR2 subunits. Thus, the ability to buffer intracellular Ca2+ is
reduced during ethanol exposure and accumulation of intracel-
lular Ca2+ is markedly increased during ethanol withdrawal,
producing neuronal excitability and “classical” NMDAr-
mediated excitotoxicity (Choi, 1994).

Evidence of a role for NMDAr in this form of neuronal
excitability and toxicity leads consideration of the impact of
corticosteroids on this form of neuronal hyperactivity. The
primary rodent glucocorticoid corticosterone, in a Type II
receptor-dependent manner, can: (1) enhance expression of
specific NR2 subunits (Takahashi et al., 2002; Weiland et al.,
1997); (2) delay extrusion of accumulated intracellular Ca2+,
likely via effects on Ca2+-ATPase activity (Elliott and Sapolsky
1993); (3) promote accumulation of extracellular glutamate,
possibly by inhibiting glial transport of glutamate (Jacobsson et
al., 2006); and increase the synthesis of the NMDAr modulating
polyamines, via increases in expression of the synthetic enzyme
ornithine decarboxylase (Ientile et al., 1998; Orti et al., 1987).
In a recent publication (Mulholland et al., 2005), organotypic
hippocampus slice cultures were exposed for 10 days to a
moderate concentration of ethanol (50 mM) with or without the
addition of physiologically relevant concentrations of corticos-
terone. Though no neuronal injury was observed when cultures
were withdrawn in the absence of exogenous corticosterone, co-
exposure to this hormone with ethanol for 10 days and during
ethanol withdrawal produced marked neuronal injury that was
both Type II receptor- and NMDAr-dependent (Fig. 1). Thus,
this model of alcohol-induced hypercortisolemia demonstrates
significant neuronal excitability and neurotoxicity and suggests
Fig. 1. Exposure of organotypic hippocampal slice cultures to corticosterone
(CORT; 1 μM) with ethanol (50 mM) for 10 days, followed by 1 day of ethanol
withdrawal (EWD) produced marked neuronal calcium accumulation (Ca2+

Orange) and injury (propidium iodide) in the CA1 pyramidal layer. Co-exposure
to the Type I receptor antagonist sprironolactone did not attenuate these effects.
Co-exposure to the Type II receptor antagonist RU486 (0.1–1.0 μM) or MK-801
(20 μM) abolished these effects. ⁎P<0.05 vs EWD; #P<0.05 vs EWD+CORT
(after Mulholland et al., 2005).
a genomic effect of corticosterone in altering NMDAr activity.
However, it must be noted that evidence exists demonstrating
the ability of short-term (24-h) corticosterone exposure to
potentiate NMDAr-mediated neuronal injury in a Type II
receptor- and Type I receptor-independent manner (Mulholland
et al., 2006). Hypercortisolemia may, then, promote NMDAr
function via multiple mechanisms. However, corticosterone is
also known to regulate the expression and/or function of ion
channels (for example L-type Ca2+ channels (Zhou et al., 2000
and inwardly rectifying potassium channels (Muma and Beck,
1999), thus, its role in promoting neuronal excitability is likely
to be quite complex.

In a general sense, the organotypic model described may best
be characterized as a model of NMDAr over-activity during
acute alcohol withdrawal, rather than a specific model of
neurotoxicity. This characterization has important implications
when interpreting the finding that exposure to high concentra-
tions of corticosterone potentiates the ethanol withdrawal
phenomena. In addition to neuronal injury, NMDAr activation
during acute or prolonged abstinence may contribute to anxiety
(Gatch et al., 1999), cognitive impairment (Thomas et al.,
2004); conditioned abstinence effects (Cole et al., 2000) and
even the alcohol deprivation effect (Vengeliene et al., 2005),
though the latter findings may simply represent partial
substitution of NMDAr antagonists for ethanol. Thus, evidence
that corticosteroids may alter the function or expression of some
NMDAr during ethanol exposure or withdrawal may be highly
relevant to understanding the consequences of alcohol-asso-
ciated hypercortisolemia for myriad abstinence-related phe-
nomena. It will be of significant interest to examine the extent to
which alcohol promotes corticosteroid release in adolescents, as
compared with adults, as this may markedly impact progression
to dependence and the development of untoward consequences
associated with alcohol use. Further, it is tempting to regard
Type II receptors as potential therapeutic targets in the
maintenance of abstinence to alcohol intake, independent of
age.

6. Involvement of glucocorticoids in alcohol consumption
and dependence

The possible role of glucocorticoids in alcohol consumption
and dependence is currently supported by less evidence than the
importance of these hormones in the neurotoxicity and
cognitive deficits produced by long-term alcohol consumption,
but the evidence for the influence of stressful experiences at all
stages of the development of alcohol dependence is consider-
able and the neuronal mechanisms involved need to be
understood.

Both clinical and preclinical evidence indicate the impor-
tance of stress in alcohol dependence. Moncrieff et al. (1996)
found that in people with alcohol drinking problems, 54% of
women and 24% of men were victims of sexual abuse or
assault, percentages substantially higher than the general
population; in the majority of cases the trauma was
experienced at an early age. In a national (US) survey of
adolescents ages 12 to 18 (Grades 7 to 12), high risk factors for



Fig. 2. The effect of corticosterone on the activity of single unit VTA neurons in
isolated midbrain slices from adult rats, basal firing and responses to NMDA.
Values are mean±s.e.m. for the frequency of spontaneous firing of dopamine-
sensitive neurons. The small solid arrows indicate applications of 5 μM NMDA
and the large solid arrows applications of 15 μMNMDA; tissue contact time for
NMDA was 5 min, after which the preparations were washed with artificial
cerebrospinal fluid. The open arrow indicates the application of dopamine,
15 μM, for 5 min. The bars show the duration of the bath application of the
following concentrations of corticosterone: a) fine hatched bar 50 nM, coarse
hatched bar 100 nM; b) shaded bar 500 nM. a) shows the effects of
corticosterone concentrations of 50 nM and 100 nM and b) the effects of
500 nM, in the presence and absence of RU38486 500 nM. a) and b): open
squares = frequency of spontaneous firing in the absence of corticosterone;
closed squares = frequency of spontaneous firing in the presence of
corticosterone; b) closed circles = frequency of spontaneous firing in the
presence of corticosterone plus RU38486 (RU38486 had no effect on firing
frequency when added alone). ⁎P<0.05 in a) compared with parallel recordings
in the absence of corticosterone. Reproduced with permission from Cho and
Little (1999).
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regular alcohol consumption were found to be exposure to
childhood abuse and stressful life events in boys and these
factors plus violence within the family and depressive symptoms
in girls (Simantov et al., 2000). Gorman and Brown (1992)
found a higher incidence of stressful major life events in patients
diagnosed with alcohol dependence than in a control population.
Employment in occupations that provided high strain and low
control was shown by Crum et al. (1995) to be associated with an
increased risk of alcohol abuse. Furthermore, the relapse rate in
abstinent alcoholics was higher in individuals who had
experienced severe psychosocial stress (Brown et al., 1995).
More recently, an impaired cortisol response to a psychosocial
test in detoxified alcoholics was shown to be a predictor of early
relapse drinking (Junghanns et al., 2003).

Clearly, stressful situations involve activation of the whole
HPA, with release of corticotrophin releasing factor and
adrenocorticotrophin in addition to glucocorticoids, and long-
term changes may involve alterations in hormone receptors and
signaling mechanisms. Little investigation has been made so far
in humans of the direct effects of alterations in circulating
glucocorticoids on alcohol consumption. Although a small
investigation in social drinkers did not demonstrate any effect of
the cortisol synthesis inhibitor, metyrapone, on alcohol
consumption (Eriksson et al., 2001), the metyrapone dose
used did not significantly alter the circulating cortisol
concentrations and the study was carried out on social drinkers
rather than alcoholics.

Preclinical evidence, however, shows that alcohol consump-
tion can be directly affected by the plasma glucocorticoid
concentrations. Corticosterone administration was found to
increase voluntary alcohol drinking in rats, while lowering
glucocorticoid concentrations with the glucocorticoid synthesis
inhibitor metyrapone or by adrenalectomy, decreased ethanol
intake (Fahlke et al., 1994a,b, 1995; Fahlke and Hanson, 1999).
We have found that administration of the Type II glucocorticoid
receptor antagonist, mifepristone, decreased the slowly devel-
oping stress-induced increases in voluntary alcohol consump-
tion in mice, while spironolactone, a Type I glucocorticoid
receptor antagonist, had no effect (O'Callaghan et al., 2005).
Koenig and Olive (2004) found an effect of mifepristone on
limited access alcohol drinking. Pasad and Pasad (1995)
showed that in a variety of experimental conditions, high
basal corticosterone levels plus attenuated stress-induced
cortisol release were associated with greater voluntary alcohol
consumption in rodents. Acute severe stress, such as footshock,
can decrease alcohol consumption. This effect was found to be
more pronounced in adolescent rats than in adults, and it did not
correlate with the total plasma corticosterone concentrations
(Brunell and Spear, 2005). Mice and rats with subordinate social
status have high circulating plasma corticosterone concentra-
tions and a consistent finding has been that subordinate animals
have higher voluntary consumption of alcohol than those of
more dominant status (Hilakaivi-Clarke and Lister, 1992;
Blanchard et al., 1993).

Further evidence comes from the extensive work of Piazza
and colleagues, who have demonstrated that rodents with higher
circulating glucocorticoid concentrations have greater tenden-
cies to self-administer a variety of dependence-producing drugs
(Piazza and La Moal, 1996, 1998; Marinelli and Piazza, 2002).
This research group also demonstrated that rats will even self-
administer corticosterone itself, in amounts that result in blood
concentrations in the range found during stressful situations
(DeRoche et al., 1993; Piazza et al., 1993). All drugs that cause
dependence, with the possible exception of benzodiazepines,
increase glucocorticoid release, although it is important in this
context to distinguish between corticosterone release caused by
experience of an unfamiliar situation and a specific pharma-
cological effect of increasing glucocorticoid release. This



241M.A. Prendergast, H.J. Little / Pharmacology, Biochemistry and Behavior 86 (2007) 234–245
glucocorticoid releasing effect may be involved in the
development of dependence, and corticosterone has been
shown to increase the saliency of rewarding stimuli in rodents
(Abrahamsen and Carr, 1996; Bhatnagar et al., 2000) and also
the palatability of alcohol (Soderpalm and Hansen, 1999).

At first sight, the established beneficial effects of opiate
antagonists in decreasing relapse drinking in alcoholics argue
against an action of glucocorticoids in increasing alcohol
consumption, since this type of drug has a specific pharmaco-
logical action in stimulating glucocorticoid release via the
pituitary. However, this action is seen on acute administration of
an opiate antagonist and most of the studies have demonstrated
it following a single intravenous infusion of naltrexone or
naloxone. In contrast, the therapeutic effects of naltrexone in
alcoholics are apparent over weeks and months of treatment.
Repeated administration of opiates does not appear to cause
HPA stimulation, as demonstrated in both experimental and
human studies (Na and Lee, 2002; Lee et al., 2005; McCaul et
al., 2001), although there is one report of raised cortisol after six
days of naltrexone (O'Malley et al., 2002). The situation is
complicated by the fact that alcohol has been found to decrease
the HPA stimulant effects of naltrexone (McCaul et al., 2001;
Williams et al., 2001), but has also been reported to increase this
effect (O'Malley et al., 2002).

With regard to possible neuronal mechanisms of the
involvement of glucocorticoids in dependence on alcohol and
other drugs, these are likely to lie in the actions of
glucocorticoids on the limbic system. Corticosterone had a
specific action on dopaminergic neurons in the ventral
tegmental area (VTA), potentiating synaptic activity mediated
by NMDA, AMPA or kainate receptor activation, but no effect
on the basal firing of these neurons (Fig. 2). The effect was
shown to involve influx of calcium ions (Cho and Little, 1999).
Although the action of corticosterone in potentiating glutamate
transmission was suggested by Overton et al. (1996) to be via
Type I glucocorticoid receptors, we demonstrated antagonism
of the effect in vitro by the Type II glucocorticoid receptor
antagonist mifepristone (Cho and Little, 1999). The important
descending projection from the prefrontal cortex to the VTA
involves glutaminergic transmission and the activation of VTA
neurons by this pathway would therefore be potentiated by Type
II receptor activation. Such an interaction would be likely to
take place during times of stress, intake of drugs of abuse or
alcohol withdrawal, when the glucocorticoid concentrations are
sufficiently high to activate the Type II receptors.

The above studies show that glucocorticoids may play an
important role in alcohol dependence and that early stressful
experiences contribute to the development of such dependence,
but the precise role of glucocorticoids in adolescent drinking
and alcohol abuse has yet to be clarified.

7. Summary

Given the wide range of signaling systems affected by
glucocorticoid receptor activation, it will be critical to
characterize further the pathway(s) most relevant to under-
standing glucocorticoid effects on alcohol use and its con-
sequences. Doing so may be of significance in identifying
potential targets that may be exploited pharmacologically in the
treatment of a wide range of disorders, including alcohol
dependence. Perhaps one of the key initial issues needing
attention is the response of the adolescent HPA axis to alcohol,
both acutely, during binge use, and with prolonged use.
Compelling work has recently been published and suggests
that indeed the adolescent HPA axis responds to stressors quite
differently than that of the adult. The consequences of this with
regard to the development of alcohol dependence and organ
injury remain to be clarified.

Examining glucocorticoid effects on alcohol and its
consequences is complicated by the relative lack of specificity
of available receptor antagonists. Mifepristone, a widely-used
glucocorticoid (Type II) receptor antagonist, also modulates the
function of structurally similar neurosteroid receptors. How-
ever, newer, more selective Type II receptor antagonists are the
target of current drug development (i.e. Peeters et al., 2004).
The evidence from preclinical and clinical studies, described
above, indicates that such drugs could decrease alcohol
withdrawal signs, decrease alcohol consumption, alleviate
depression and prevent neurotoxicity and the development of
cognitive deficits in alcoholics. Development of selective
agents for these receptor sites will be critical with regard to
their use as investigative tools and, potentially, therapeutic
agents.
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